首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   25113篇
  免费   190篇
  国内免费   929篇
测绘学   1430篇
大气科学   2034篇
地球物理   4662篇
地质学   11910篇
海洋学   1040篇
天文学   1736篇
综合类   2163篇
自然地理   1257篇
  2022年   5篇
  2021年   5篇
  2020年   8篇
  2019年   7篇
  2018年   4767篇
  2017年   4046篇
  2016年   2593篇
  2015年   245篇
  2014年   105篇
  2013年   61篇
  2012年   1014篇
  2011年   2747篇
  2010年   2043篇
  2009年   2339篇
  2008年   1906篇
  2007年   2388篇
  2006年   81篇
  2005年   217篇
  2004年   428篇
  2003年   435篇
  2002年   275篇
  2001年   72篇
  2000年   67篇
  1999年   31篇
  1998年   36篇
  1997年   14篇
  1996年   22篇
  1995年   14篇
  1994年   9篇
  1993年   10篇
  1992年   11篇
  1991年   9篇
  1990年   10篇
  1989年   19篇
  1988年   8篇
  1987年   8篇
  1986年   7篇
  1985年   5篇
  1984年   10篇
  1983年   6篇
  1982年   6篇
  1981年   30篇
  1980年   27篇
  1979年   8篇
  1978年   8篇
  1976年   8篇
  1975年   7篇
  1973年   5篇
  1966年   5篇
  1958年   5篇
排序方式: 共有10000条查询结果,搜索用时 552 毫秒
991.
Given its geological and climatic conditions and its rugged orography, Asturias is one of the most landslide prone areas in the North of Spain. Most of the landslides occur during intense rainfall episodes. Thus, precipitation is considered the main triggering factor in the study area, reaching average annual values of 960 mm. Two main precipitation patterns are frequent: (i) long-lasting periods of moderate rainfall during autumn and winter and (ii) heavy short rainfall episodes during spring and early summer. In the present work, soil moisture conditions in the locations of 84 landslides are analysed during two rainfall episodes, which represent the most common precipitation patterns: October–November 2008 and June 2010. Empirical data allowed the definition of available water capacity percentages of 99–100% as critical soil moisture conditions for the landslide triggering. Intensity-duration rainfall thresholds were calculated for each episode, considering the periods with sustained high soil moisture levels before the occurrence of each analysed landslide event. For this purpose, data from daily water balance models and weather stations were used. An inverse relationship between the duration of the precipitation and its intensity, consistent with published intensity-duration thresholds, was observed, showing relevant seasonal differences.  相似文献   
992.
A smoothed particle hydrodynamics (SPH) numerical modeling method implemented for the forward simulation of propagation and deposition of flow-type landslides was combined with different empirical geomorphological index approaches for the assessment of the formation of landslide dams and their possible evolution for a local case study in southwestern China. The SPH model was calibrated with a previously occurred landslide that formed a stable dam impounding the main river, and it enabled the simulation of final landslide volumes, and the spatial distribution of the resulting landslide deposits. At four different sites on the endangered slope, landslides of three different volumes were simulated, respectively. All landslides deposited in the main river, bearing the potential for either stable impoundment of the river and upstream flooding scenarios, or sudden breach of incompletely formed or unstable landslide dams and possible outburst floods downstream. With the empirical indices, none of the cases could be identified as stable formed landslide dam when considering thresholds reported in the literature, showing up the limitations of these indices for particular case studies of small or intermediate landslide volumes and the necessity to adapt thresholds accordingly for particular regions or sites. Using the occurred benchmark landslide as a reference, two cases could be identified where a complete blockage occurs that is more stable than the reference case. The other cases where a complete blockage was simulated can be considered as potential dam-breach scenarios.  相似文献   
993.
Rockfall hazards increase the risk of train derailment along railway corridors in western Canada. In this study, repeated terrestrial laser scanning (TLS) datasets were collected every 2–3 months at three different sites along the Thompson and Fraser River corridors in British Columbia, referred to as the Goldpan, White Canyon, and Mile 109 sites. A total of 207 rockfall events occurring across all three sites between November 11, 2014 and October 18, 2016 were recorded in a database. For each of these rockfalls, pre-failure deformation was measured using a method of three-dimensional roto-translation block tracking. Each rockfall was classified by its deformation behaviour and further categorised based on failure mechanism, volume, lithology, and the roughness condition of the failure plane. Results reveal that detectable levels of deformation were measured in 33% of the total number of rockfall events using the present methods. Rotation deformation was most commonly observed in toppling failures with relatively steep joint orientations. Conversely, planar sliding blocks generally exhibited the least measurable deformation, with the majority not showing any precursory translation or rotation. It is postulated that overhanging rockfall configurations may suppress the expression of deformation in rockfall source blocks, though additional research is required to confirm this.  相似文献   
994.
This paper proposes and demonstrates a two-layer depth-averaged model with non-hydrostatic pressure correction to simulate landslide-generated waves. Landslide (lower layer) and water (upper layer) motions are governed by the general shallow water equations derived from mass and momentum conservation laws. The landslide motion and wave generation/propagation are separately formulated, but they form a coupled system. Our model combines some features of the landslide analysis model DAN3D and the tsunami analysis model COMCOT and adds a non-hydrostatic pressure correction. We use the new model to simulate a 2007 rock avalanche-generated wave event at Chehalis Lake, British Columbia, Canada. The model results match both the observed distribution of the rock avalanche deposit in the lake and the wave run-up trimline along the shoreline. Sensitivity analyses demonstrate the importance of accounting for the non-hydrostatic dynamic pressure at the landslide-water interface, as well as the influence of the internal strength of the landslide on the size of the generated waves. Finally, we compare the numerical results of landslide-generated waves simulated with frictional and Voellmy rheologies. Similar maximum wave run-ups can be obtained using the two different rheologies, but the frictional model better reproduces the known limit of the rock avalanche deposit and is thus considered to yield the best overall results in this particular case.  相似文献   
995.
Landslides triggered by the 2016 Mj 7.3 Kumamoto,Japan, earthquake   总被引:2,自引:0,他引:2  
The aim of this study is to establish a detailed and complete inventory of the landslides triggered by the Mj 7.3 (Mw 7.0) Kumamoto, Japan, earthquake sequence of 15 April 2016 (16 April in JST). Based on high-resolution (0.5–2 m) optical satellite images, we delineated 3,467 individual landslides triggered by the earthquake, occupying an area of about 6.9 km2. Then they were validated by aerial photographs with very high-resolution (better than 0.5 m) and oblique field photos. Of them, 3,460 landslides are distributed in an elliptical area about 6000 km2, with a NE-SW directed 120-km-long long axis and a 60-km-long NW-SE trending short axis. Most of the landslides are shallow, disrupted falls and slides, with a few flow-type slides and rock and soil avalanches. The analysis of correlation between the landslides and several control factors shows the areas of elevation 1000–1200 m, stratum of Q3-Hvf, seismic intensity VIII and VIII+, and peak ground acceleration (PGA) 0.4–0.6 g register the highest landslide abundance. This study also discussed the relationship between the spatial pattern of the landslides and the seismotectonic structure featured by a strike-slip fault with a normal component and the volcanism in the study area.  相似文献   
996.
Information about the next Kokomeren Summer School that will take place on August 15–30, 2018, is provided.  相似文献   
997.
Since Holocene time, above-mean precipitations recorded during the El Niño warm ENSO phase have been linked to the occurrence of severe debris flows in the arid Central Andes. The 2015–2016 El Niño, for its unusual strength, began driving huge and dangerous landslides in the Central Andes (32°) in the recent South Hemisphere summer. The resulting damages negatively impacted the regional economy. Despite this, causes of these dangerous events were ambiguously reported. For this reason, a multidisciplinary study was carried out in the Mendoza River valley. Firstly, a geomorphological analysis of affected basins was conducted, estimating morphometric parameters of recorded events such as velocity, stream flow, and volume. Atmospheric conditions during such events were analyzed, considering precipitations, snow cover, temperature range, and the elevation of the zero isotherm. Based on our findings, the role of El Niño on the slope instability in the Central Andes is more complex in the climate change scenario. Even though some events were effectively triggered by intense summer rainstorm following expectations, the most dangerous events were caused by the progressive uplifting of the zero isotherm in smaller basins where headwaters are occupied by debris rock glaciers. Our research findings give light to the dynamic coupled system ENSO–climate change–landslides (ECCL) at least in this particular case study of the Mendoza River valley. Landslide activity in this Andean region is driven by wetter conditions linked to the ENSO warm phase, but also to progressive warming since the twentieth century in the region. This fact emphasizes the future impact of the natural hazards on Andean mountain communities.  相似文献   
998.
999.
Large landslides and deep-seated gravitational slope deformations (DSGSD) represent an important geo-hazard in relation to the deformation of large structures and infrastructures and to the associated secondary landslides. DSGSD movements, although slow (from a few millimetres to several centimetres per year), can continue for very long periods, producing large cumulative displacements and undergoing partial or complete reactivation. Therefore, it is important to map the activity of such phenomena at a regional scale. Ground surface displacements at DSGSD typically range close to the detection limit of monitoring equipment but are suitable for synthetic aperture radar (SAR) interferometry. In this paper, permanent scatterers (PSInSAR?) and SqueeSAR? techniques are used to analyse the activity of 133 DSGSD, in the Central Italian Alps. Statistical indicators for assigning a degree of activity to slope movements from displacement rates are discussed together with methods for analysing the movement and activity distribution within each landslide. In order to assess if a landslide is active or not, with a certain degree of reliability, three indicators are considered as optimal: the mean displacement rate, the activity index (ratio of active PS, displacement rate larger than standard deviation, overall PS) and the nearest neighbor ratio, which allows to describe the degree of clustering of the PS data. According to these criteria, 66% of the phenomena are classified as active in the monitored period 1992–2009. Finally, a new methodology for the use of SAR interferometry data to attain a classification of landslide kinematic behaviour is presented. This methodology is based on the interpretation of longitudinal ground surface displacement rate profiles in the light of numerical simulations of simplified failure geometries. The most common kinematic behaviour is rotational, amounting to 41 DSGSDs, corresponding to the 62.1% of the active phenomena.  相似文献   
1000.
The 3rd Regional Symposium on Landslides in the Adriatic-Balkan Region (3rd ReSyLAB) was held in Ljubljana, Slovenia, from June 11 to 13, 2017, with 70 participants from nine countries (Austria, Bosnia and Hercegovina, Croatia, Czech Republic, Italy, Republic of Macedonia, Serbia, Slovenia, Spain)—scientists, engineers, researchers, students, experts, politicians, and other decision-makers working in the area of landslide risk reduction in the region. The ReSyLAB is a biannual event organized by the Adriatic-Balkan Network of the International Consortium on Landslides (ICL ABN). Being an important form of activities of this ICL regional network comprising of six ICL members from four countries, it was also a contribution of the International Consortium on Landslides (ICL) to the implementation of the Sendai Framework for Disaster Risk Reduction 2015–2030. This article reports on the main outcomes of the 3rd ReSyLAB Symposium. Altogether, 41 abstracts were published in the symposium book of abstracts, and the symposium proceedings with over 20 reviewed full papers are under preparation to be printed early in 2018. During the 3rd ReSyLAB, a five invited keynote lectures have been presented, and 28 oral presentations are given to the audience. An important part of the symposium was a Round Table entitled “Enhancing cooperation between landslide research community and end users.” On the last day of the symposium, over 30 experts participated in two post-symposium study tours in Slovenia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号